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Multi-angle Imaging Spectroradiometer 
(MISR) aerosol data 

MISR 
•  9 view angles, 4 spectral bands 
•  275 m to 1.2 km sampling 
•  16-day repeat coverage 

 

AOD: Aerosol Optical Depth 
•  Dust, plumes from volcanoes 

and fires, pollution 
•  Estimated from 16x16-pixel area 

Goal: analyze large volume of AOD data  
to find interesting observations 
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AOD over Los Angeles, 2000 - 2011 
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12,288 AOD pixels 4.4-km resolution 



Discovery 

� Exploration of large data sets 

� Desiderata 
◦ Diverse sampling of data set 
◦  Explain why items are selected 
◦ Handle missing values 

System 
learns 
model 

System 
chooses 

item 
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Diversity:  What to select? 
�  Items that differ from those previously 

seen 
�  Singular Value Decomposition 
◦ Approximate model of data set variation 

◦ Keep only the top K vectors from U 
X = U�V TKnown items 

[M. Scholz, 2006]  
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Diversity:  What to select? 
�  Items that differ from those previously 

seen 
�  Singular Value Decomposition 
◦ Approximate model of data set variation 

◦ Keep only the top K vectors from U 
◦  Select items in D that are  

difficult to represent with model U 
� Reconstruction error 

R(x) = ||x� (UUT (x� µ) + µ)||2
Reconstruction of x 

Mean of X 

For x in D 
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X = U�V TKnown items 



DEMUD: Discovery through Eigenbasis 
Modeling of Uninteresting Data 

Select most 
interesting x in D 

Update model U 
to include x 

Remove x from D 

Compute scores for 
all x in D using U 

Initial ranking of D 
by SVD-1 

reconstruction error 
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Treat x as  
“no longer interesting” 



Updating model U with new x 

� Redo SVD from scratch: expensive 
�  Incrementally update U: fast! 
◦ U depends only on previous U and new x  

[Ross et al., 2008] 
◦ Update data mean incrementally 

Iterations 

Data 

Principal Components 

X1 X2 X3 X4 X5 

U1 U2 U3 U4 U5 
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Explanations: Reconstruction error 
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Reconstruction error 

Observed data Reconstructed data 

Higher than expected 

Lower than expected 

MISR RGB data 



DEMUD using zero-filled data 
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Reconstruction error 

Observed data Reconstructed data 

Higher than expected 

Lower than expected 

MISR RGB data 

1 

July 10, 2008 

Missing due 
to clouds 



DEMUD using zero-filled data 
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2 

Reconstruction error 

Observed data Reconstructed data 

Dec. 20, 2009 

MISR RGB data 

Missing due 
to clouds 



DEMUD using zero-filled data 
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Reconstruction error 

Observed data Reconstructed data 

July 26, 2002 

MISR RGB data 

McNally Fire 
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Zero-fill: bias towards missing values 

But missing data isn’t really an interesting kind of anomaly here 



Handling missing values 
�  SVD cannot operate on NaNs 
◦  Fill with zero? 
◦  Impute missing values? (e.g., kriging)   

�  Instead, do careful SVD updates using only 
the observed values [Brand, 2002] 

◦ Also, restrict reconstruction error to 
observed values 
◦ Also, only update evolving mean with 

observed values 
14 
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The right side is somewhat more complicated because we are adding rows to V but must guarantee that
VV0 is orthogonal. To do so, we will also have to calculate and update the pseudo-inverse V0+. Let r be the
rank of the SVD prior to the update. When the rank increases, the right-hand side update is simply

V [V0
0
1], then V0  [V

0
0
0
1]B, then V0+ B>[V

0+

0
0
1]. (8)

When the rank does not increase, we split B! [Ww ] where matrixW .= B(1:r,1:r) is a linear transform that will
be applied toV0, and row-vectorw .=B(r+1,1:r) is the eigen-space encoding of the new data vector. The update
is

V0 = V0W, then V0+ W+V0+, then V [VV0+w]. (9)

It can be verified algebraically that VnewV0new is identical to the first r columns of [VoldV
0
old

0
0
1]B.

Remarkably, W+ can be computed in O(r2) time using the identity W+ = (I+w>w/(1�ww>))W>
(when [Ww ]>[Ww ] = I; see appendix 1 for the proof) . This can be restructured to eliminate the O(r3) matrix-
matrix product in favor of an O(r2) vector-vector outer product:

W+ =W>+(w>/(1�ww>)))(wW>). (10)

This eliminates the costliest steps of the update—rotation and re-orthogonalization of U,V—and requires
that we only keep U0 orthogonal. The time complexity falls to O(pr2) for the r rank-increasing updates and
O(pr+ r3) for the q� r non rank-increasing updates, with an overall complexity of O(pqr+qr3) = O(pqr),
assuming that the rank is small relative to the dimensionality of the samples, specifically r = O(pp). For a
high-dimensional low-rank matrices, we effectively have a linear-time SVD algorithm.

4.2 Subspace tracking

For nonstationary data streams, the best we can do is track an evolving subspace U. In the incremental SVD,
this is neatly and inexpensively accomplished between updates by decaying the singular values s γs; 0 <
γ< 1. All updates of V are simply dropped.

5 Missing data

Consider adding a vector c with missing values. In our implementation, these are indicated by setting entries
in c to the IEEE754 floating point value NaN (not-a-number). Partition c into c• and c�, vectors of the known
and unknown values in c, respectively, and let U•,U� be the corresponding rows of U. Imputation of the
missing values via the normal equation

ĉ�  U� diag(s)(diag(s)U>• U• diag(s))+(diag(s)U>• c•) = U� diag(s)(U• diag(s))+c•, (11)

yields the completed vector ĉ that lies the fewest standard deviations from the origin, with respect to the
density of data seen thus far (X+ denotes pseudo-inverse). Substituting equation 11 into the Q matrix yields

Q=

diag(s) U>ĉ
0 k

�
=


diag(s) diag(s)(U• diag(s))+c•
0 kc•�U• diag(s)(U• diag(s))+c•)k

�
, (12)

where U>ĉ is the projection of the vector onto the left singular vectors and k is the distance of the vector
to that subspace. As one might expect, with missing data it is rare that k > 0. In the worst case, imputation
raises the per-update complexity to O(pr3), but we find in practice that the per-update run time stays closer
to O(pr2), because with missing data the pseudo-inverse problem tends to be small and thus dominated by
the problem of rediagonalizing Q .
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We consider how an SVD may be updated by adding rows and/or columns of data, which may be missing
values and/or contaminated with correlated (colored) noise. The size of the data matrix need not be known:
The SVD is developed as the data comes in and handles missing values in a manner that minimizes rank.
The resulting algorithms have better time and space complexity than full-data batch SVD methods and can
produce more informative results (more parsimonious factorings of incomplete data). In the case of dense
low-rank matrices, the time complexity is linear in the size and the rank of the data—O(pqr)—while the
space complexity is sublinear—O((p+q)r).

2 Related work

SVD updating has a literature spread over three decades [5,4,1,10,7,23] and is generally based on Lanczos
methods, symmetric eigenvalue perturbations, or identities similar to equation 2 below. Zha and Simon [23]
use such an identity but their update is approximate and requires a dense SVD. Chandrasekaran et alia [7]
begin similarly but their update is limited to single vectors and is vulnerable to loss of orthogonality. Levy
and Lindenman [14] exploit the relationship between the QR-decomposition and the SVD to incrementally
compute the left singular vectors in O(pqr2) time; if p,q, and r are known in advance and p� q� r, then
the expected complexity falls to O(pqr). However, this is also vulnerable to loss of orthogonality and results
have only been reported for matrices having a few hundred columns.

None of this literature contemplates missing or uncertain values, except insofar as they can be treated
as zeros (e.g., [1]), which is arguably incorrect. In batch-SVD contexts, missing values are usually handled
via subspace imputation, using an expectation-maximization-like procedure: Perform an SVD of all complete
columns, regress incomplete columns against the SVD to estimate missing values, then re-factor and re-impute
the completed data until a fixpoint is reached (e.g., [21]). This is extremely slow (quartic time) and only works
if very few values are missing. It has the further demerit that the imputation does not minimize effective rank.
Other heuristics simply fill missing values with row- or column-means [19].

In the special case where a matrix M is nearly dense, its normalized scatter matrix Σm,n
.= hMi,mMi,nii

may be fully dense due to fill-in. In that case Σ’s eigenvectors areM’s right singular vectors [13]. However,
this method does not lead to the left singular vectors, and it often doesn’t work at all because Σ is frequently
incomplete as well, with undefined eigenvectors.

3 Updating an SVD

We begin with an existing rank-r SVD as in equation 1. We have a matrix Cp⇥c whose columns contain
additional multivariate measurements. Let L .=U\C=U>C be the projection of C onto the orthogonal basis
U, also known as its “eigen-coding.” Let H .= (I�UU>)C = C�UL to be the component of C orthogonal
to the subspace spanned by U. (I is the identity matrix.) Finally, let J be an orthogonal basis of H and let
K .= J\H= J>H be the projection of C onto the subspace orthogonal to U. For example, JK QR �H could be
a QR-decomposition of H. Consider the following identity:

⇥
U J

⇤
diag(s) L
0 K

�
V 0
0 I

�>
=

⇥
U (I�UU>)C/K

⇤
diag(s) U>C
0 K

�
V 0
0 I

�>

=
⇥
Udiag(s)V> C

⇤
=

⇥
M C

⇤
(2)

Like an SVD, the left and right matrices in the product are unitary and orthogonal. The middle matrix, which
we denote Q, is diagonal with a c-column border. To update the SVD we must diagonalize Q. Let

U0 diag(s0)V0> SVD �Q (3)



DEMUD: ignore missing data 
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Reconstruction error 

Observed data Reconstructed data 

MISR RGB data 

1 

July 10, 2008 

Missing due 
to clouds 



DEMUD: ignore missing data 
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Reconstruction error 

Observed data Reconstructed data 
4 

Nov. 15, 2008 

MISR RGB data 

Montecito, Sayre, and Freeway fires: 400 houses + 500 mobile homes burned 
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Ignore missing 

Ignore missing: bias for good data 

Much more observed data 
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Ignore missing: Increased diversity  
in interesting AODs 

Ignore missing: 
Selects high and low AOD 

Zero-fill: selects high AOD + missing values 



Ignore missing and only count 
positive residuals 
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Percent observed Max-magnitude residual 

Good compromise: more observed values,  
high AOD residuals (i.e., discovery of high-AOD events) 

R(x) = ||x� (UUT (x� µ) + µ)||2



Ignore+high: High-AOD discovery 
not found by previous two methods 
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Reconstruction error 

Observed data Reconstructed data 

MISR RGB data 

4 

Aug. 14, 2009 
Fire? 



Summary 
�  DEMUD: Scientific discovery in large data sets 
◦  Incremental SVD to model “already seen” 
◦ Diverse selections 
◦  Explanations for selections 
◦ Missing data: only use observed data 

� MISR aerosol data study 
◦ Detect fires and other interesting aerosol 

events  

Contact: kiri.wagstaff@jpl.nasa.gov 
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